Abstract

Mammalian vitreous gel contains two major network-forming polymeric systems: long, thin fibrils comprising predominantly type II collagen and a meshwork of hyaluronan. The gel structure is maintained primarily by the collagen component, but little is known about the mechanisms of spacing of the collagen fibrils and of interactions between fibrils to form a stable network. In this study we have applied the technique of freeze etching/rotary shadowing electron microscopy in order to reveal the fibrillar network in central, cortical and basal vitreous and to understand the structural relationship between the collagen fibrils. The fibrils were arranged side by side in narrow bundles that frequently branched to link one bundle to another. Only a minor part of the fibrillar network consisted of segments that had a diameter of a single fibril (16.4nm mean diameter). In addition, three morphologically distinct filamentous structures were observed that appeared to form links within the collagen fibrillar network: short, single interlinking filaments of 7.0nm mean diameter, network-forming filaments of 6.7nm mean diameter, and longer filaments of 8.2nm mean diameter. All three types of filamentous structure were removed by digestion of the vitreous gels with Streptomyces hyaluronan lyase prior to freeze etching, indicating that these structures contain or are stabilised by hyaluronan. These filamentous structures may contribute to the structural stability of the vitreous gel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.