Abstract

Alignment of collagen type I fibers is a hallmark of both physiological and pathological tissue remodeling. However, the effects of collagen fiber orientation on endothelial cell behavior and vascular network formation are poorly understood because of a lack of model systems that allow studying these potential functional connections. By casting collagen type I into prestrained (0, 10, 25, 50% strain), poly(dimethylsiloxane) (PDMS)-based microwells and releasing the mold strain following polymerization, we have created collagen gels with varying fiber alignment as confirmed by structural analysis. Endothelial cells embedded within the different gels responded to increased collagen fiber orientation by assembling into 3D vascular networks that consisted of thicker, more aligned branches and featured elevated collagen IV deposition and lumen formation relative to control conditions. These substrate-dependent changes in microvascular network formation were associated with altered cell division and migration patterns and related to enhanced mechanosignaling. Our studies indicate that collagen fiber alignment can directly regulate vascular network formation and that culture models with aligned collagen may be used to investigate the underlying mechanisms ultimately advancing our understanding of tissue development, homeostasis, and disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.