Abstract
Biologically engineered nanomaterials give rise to unique and intriguing properties, which are not available in nature. The full-realization of such has been hindered by the lack of robust and straightforward techniques to produce the required architectures. Here a new bottomup bionano-engineering route is developed to construct nanomaterials using a guided assembly of collagen building blocks, establishing a lithographic process for three-dimensional collagen-based hierarchical micronano-architectures. By introducing optimized hybrid electro-hydrodynamic micronano-lithography exploiting collagen molecules as biological building blocks to self-assemble into a complex variety of structures, quasi-ordered mimics of metamaterials-like are constructed. The tailor-designed engineered apparatus generates the underlying substrates with vertical orientation of collagen at controlled speeds. Templating these hierarchical structures into inorganic materials allows the replication of their network into periodic metal micronano-assemblies. These generate substrates with interesting optical properties, suggesting that size-and-orientation dependent nanofilaments with varying degree of lateral order yield distinctly coloured structures with characteristic optical spectra correlated with observed colours, which varying diameters and interspacing, are attributable to coherent scattering by different periodicity of each fibrous micronano-structure. The artificial mimics display similar optical characteristics to the natural butterfly wing's structure, known to exhibit extraordinary electromagnetic properties, driving future applications in cloaking, super-lenses, photovoltaics and photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.