Abstract

The Sagg/+ mouse is an ethylnitrosourea-derived mutant with a dermal phenotype similar to some of the subtypes of Ehlers-Danlos syndrome (EDS) and cutis laxa. The dermis of the Sagg/+ mouse has less dense and more disorganized collagen fibers compared to controls. The size of extracted Type I dermal collagen was the same as that observed in normal skin; however, more collagen could be extracted from Sagg/+ skin, which also showed decreased collagen content and decreased steady-state levels of alpha1(I), alpha2(I), alpha1(V), and alpha2(V) procollagen mRNAs. The biomechanical properties of Sagg/+ skin were significantly decreased relative to normal skin. However, there were no significant differences in the quantities of the major collagen cross-links, that is, dehydrohydroxylysinonorleucine and dehydrohistidinohydroxymerodesmosine between Sagg/+ and normal skin. Electron microscopic evaluation of Sagg/+ skin indicated that the mutation interferes with the proper formation of collagen fibrils and the data are consistent with a mutation in Type V collagen leading to haploinsufficiency with the formation of two sub-populations of collagen fibrils, one normal and one with irregular shape and a larger diameter. Further study of this novel mutation will allow the identification of new mechanisms involved in the regulation of normal and pathologic collagen gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.