Abstract

BackgroundKeratoconus (KC) is a common multifactorial ectatic corneal disease with unknown onset. KC most commonly appears in adolescence and affects approximately 1:400 people worldwide. Treatment options, for advanced KC cases, are collagen cross-linking (CXL) and corneal transplants. CXL is a new KC treatment that helps arrest the disease. Unfortunately, only a fraction of KC patients will qualify for CXL treatment. Our goal, in this study, was to begin to understand how CXL affects the corneal microenvironment and pave the way towards a more patient-driven CXL treatment.MethodsPrimary human corneal fibroblasts from healthy and KC donors were plated on transwell polycarbonate membranes and stimulated by a stable vitamin C. At 4 weeks, riboflavin was added followed by UVA irradiation. Transmission Electron Microscopy (TEM) and western blots were used to assess the effect of CXL on the extracellular matrix (ECM) and the resident cells, pre- and post CXL.ResultsData shows CXL improved lamellar organization showing more organized collagen fibrils decorated with proteoglycans (PGs). The distribution of the collagen fibrils and interfibrillar spacing was also visibly improved, post-CXL. Lumican, mimecan, and decorin were the dominant PGs and were significantly upregulated in post-CXL cultures. ECM degradation proteins, matrix metalloproteinases (MMPs), MMP-1, -3, and -9, but not MMP-2, were significantly downregulated post-CXL. TIMP-1 and -2 were not modulated by CXL.ConclusionThe unknown effects of CXL on the human corneal microenvironment have hampered our ability to make CXL available to all KC patients. Our current study provides a deeper understanding on CXL activity, using our unique 3D in vitro model.

Highlights

  • Keratoconus (KC) is a common ectatic corneal disease which impairs vision by causing corneal thinning, bulging and scarring [1]

  • tissue inhibitors of metalloproteinases (TIMPs)-1 and -2 were not modulated by CXL

  • We examined the extracellular matrix (ECM) alterations following CXL treatment in vitro

Read more

Summary

Background

Keratoconus (KC) is a common multifactorial ectatic corneal disease with unknown onset. For advanced KC cases, are collagen cross-linking (CXL) and corneal transplants. CXL is a new KC treatment that helps arrest the disease. Only a fraction of KC patients will qualify for CXL treatment. In this study, was to begin to understand how CXL affects the corneal microenvironment and pave the way towards a more patient-driven CXL treatment.

Methods
Results
Introduction
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.