Abstract
To test the potential of combining double quantum and magnetization transfer filtered ultra-short echo time (DQF-MT-UTE) MRI to obtain information about the macromolecular composition and characteristics of connective tissues. A DQF-MT-UTE pulse sequence was implemented on a 14.1 T AVANCE III Bruker spectrometer equipped with a Bruker micro2.5-imaging gradient system to obtain images of porcine annulus fibrosus. The DQF-MT-UTE MRI of the annulus fibrosus of porcine intervertebral disc, where the creation time of the double quantum coherence filtering (DQF) was on a time scale appropriate for excitation of macromolecules, showed stronger signal from the outer layers of the disc than from the inner layers closer to the nucleus pulposus. Similarly, spectroscopic studies showed the same trend in the efficiency of the magnetization transfer (MT) from collagen to water. DQF-MT filtered UTE MRI of the annulus fibrosus provides new contrast parameters that depend on the concentration of the collagen and on the rate and efficiency of MT of its protons to water. The latter parameters appear to be different for collagen types I and II in the annulus fibrosus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Magnetic Resonance in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.