Abstract

A novel collagen-based dressing consisting of 2,3-dihydroxybenzoic-acid-modified gelatin microspheres loaded with doxycycline has previously been reported to address both infection and matrix degradation. In the present study the potential benefits of the dressing were investigated in an excisional wound model in rats challenged with Pseudomonas aeruginosa. A full-thick excisional wound (1.5 x 1.5 cm) was created on the dorsum of the rats and infection induced by injecting 10(5) colony-forming units (CFU) of P. aeruginosa. The healing pattern was assessed from wound reduction, matrix metalloprotease (MMP) levels, CFU reduction and histological and biochemical analysis. The treated group exhibited complete healing by day 15, compared with day 24 in the control group. Early subsidence of infection (99.9% by day 9) resulted in faster epidermal resurfacing and fibroplasias, whereas the microbial load exceeded 10(3) CFU even on day 15 in the control group and caused severe inflammation. Biochemical analysis showed that the expression of both collagen and hexosamine was significantly increased in the treated group. Gelatin zymography revealed prolonged expression of MMPs 2, 8 and 9 in the control group compared with the treated group. The study indicates that the developed dressing attenuated both infection and metalloprotease levels, and may therefore have potential application in wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.