Abstract

Conductive hydrogels are ideal for flexible sensors, but it is still a challenge to produce such hydrogels with combined toughness, self-adhesion, self-healing, anti-freezing, moisturizing, and biocompatibility properties. Herein, inspired by natural skin, a highly stretchable, strain-sensitive, and multi-environmental stable collagen-based conductive organohydrogel was constructed by using collagen (Col), acrylic acid, dialdehyde carboxymethyl cellulose, 1,3-propylene glycol, and AlCl3. The resulting organohydrogel exhibited excellent tensile (strain >800%), repeatable adhesion (>10 times), self-healing [self-healing efficiency (SHE) ≈ 100%], anti-freezing (-60 °C), moisturizing (>20 d), and biocompatible properties. This organohydrogel also possessed good electrical conductivity (σ = 3.4 S/m) and strain-sensitive properties [GF (gauge factor) = 13.65 with the maximal strain of 400%]. Notably, the organohydrogel had a considerable low-temperature self-healing performance (SHE = 88% at -24 °C) and rapid underwater self-healing property (SHE = 92%, self-healing time <20 min). This type of strain sensor could not only accurately and continuously monitor the large-scale motions of the human body but also provide an accurate response to the human tiny motions. This work not only proposes a development strategy for a multifunctional conductive organohydrogel with multiple environmental stability but also provides potential research value for the construction of biomimetic electronic skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.