Abstract

This paper investigates the collaborative tracking control for dual linear switched reluctance machines (LSRMs) over a communication network with random time delays. Considering the spatio-temporal constraint relationship of the dual LSRMs in complex industrial processes, the collaborative tracking control scheme is proposed based on the networked motion control method. The stability conditions and the controller design method for the networked dual LSRMs are obtained from the two motors relative position error by using Lyapunov theory and delay systems approach. Four different allocation schemes combined with two kinds of external control signals are applied onto the collaborative tracking control experiment platform of the dual LSRMs to validate the effectiveness of the proposed method. The maximum steady-state relative position error within 0.104 mm can be achieved under the constant absolute position reference input signal of 3 mm, and the maximum absolute relative position error within ±0.46 mm can be achieved under the sinusoidal reference of 8 mm amplitude and 0.2 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call