Abstract
This paper considers a collaborative tracking control problem using a group of fixed-wing unmanned aerial vehicles (UAVs) with constant and nonidentical speeds. The dynamics of fixed-wing UAVs are modeled by unicycle-type equations with nonholonomic constraints, assuming that UAVs fly at constant altitudes in the nominal operation mode. The controller is designed such that all fixed-wing UAVs as a group can collaboratively track a desired target’s position and velocity. This paper first presents conditions on the relative speeds of tracking UAVs and the target to ensure that the tracking objective can be achieved when UAVs are subject to constant-speed constraints. A reference velocity is constructed that includes both the target’s velocity and position as feedback, which is to be tracked by the group centroid. In this way, all vehicles’ headings are controlled such that the group centroid follows a reference trajectory that successfully tracks the target’s trajectory. A spacing controller is further devised to ensure that all vehicles stay close to the group centroid trajectory. Tradeoffs in the controller design and performance limitations of the target tracking control due to the constant-speed constraint are also discussed in detail. Experimental results with three fixed-wing UAVs tracking a target rotorcraft are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.