Abstract
The launch of the carbon-allowance trading market has changed the cost structure of the power industry. There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch. In this study, a data-driven model of the uncertainty in the annual carbon price was created. Subsequently, a collaborative, robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation. The model is solved using the column-and-constraint generation algorithm. An operation and cost model of a carbon-capture power plant (CCPP) that couples the carbon market and the economic operation of the power system is also established. The critical, profitable conditions for the economic operation of the CCPP were derived. Case studies demonstrated that the proposed low-carbon, robust dispatch model reduced carbon emissions by 2.67% compared with the traditional, economic, dispatch method. The total fuel cost of generation decreases with decreasing, conservative, carbon-price-uncertainty levels, while total carbon emissions continue to increase. When the carbon-quota coefficient decreases, the system dispatch tends to increase low-carbon unit output. This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.