Abstract
Disruptive events, such as natural disasters and manmade coordinated attacks, have inspired greater interests in the concept of disruption propagation and disruption response in cyber-physical systems (CPSs) and complex networks. Due to the high interconnectedness and complex interactions within and between CPSs, disruptions are not isolated events, and can propagate with severe impacts both locally and remotely, and must be contained lest catastrophic and irreversible damages occur. Responding agents are often employed to tackle the disruptions, and the agents' effectiveness becomes a critical concern, which is addressed in this article. Although the phenomenon of disruption propagation in CPSs and complex networks is becoming better understood, the interactions between the responding agents and the disruption propagation have not yet been investigated and studied in detail. In this work, the Collaborative Response of Disruption Propagation (CRDP) model is introduced as a general approach to the network disruption propagation problem. The CRDP model captures the important components of the problem: The client network, the agent network, the disruptions, and their interactions. Three system awareness analytics and two novel online scheduling protocols have been developed based on the analysis of the interactions. The analytics and protocols seek to provide insights into the system's conditions, and guide the response agents and their management to contain and eliminate the disruption propagation. The CRDP model, together with its developed analytics and protocols, can be applied to different network types, different disruption scenarios, and different response mechanisms available due to the generality of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.