Abstract
Traditional collaborative representation based classification (CRC) method usually faces the challenge of data uncertainty hence results in poor performance, especially in the presence of appearance variations in pose, expression and illumination. To overcome this issue, this paper presents a CRC-based face classification method by jointly using block weighted LBP and analysis dictionary learning. To this end, we first design a block weighted LBP histogram algorithm to form a set of local histogram-based feature vectors instead of using raw images. By this means we are able to effectively decrease data redundancy and uncertainty derived from image noises and appearance variations. Second, we adopt an analysis dictionary learning model as the projection transform to construct an analysis subspace, in which a new sample is characterized with the improved sparsity of its reconstruction coefficient vector. The crucial role of the analysis dictionary learning method in CRC is revealed by its capacity of the collaborative representation in an analytic coefficient space. Extensive experimental results conducted on a set of well-known face databases demonstrate the merits of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.