Abstract

Abstract Operators often use real-time operation centers (RTOC) as a funnel point for data streams transmitted from multiple rigs during the well construction process. A RTOC is typically staffed by subject matter experts (SMEs), with the primary goals of interpreting real-time wellbore conditions and relaying actionable recommendations to help reduce nonproductive time (NPT) and well control incidents. Automation is a strong industry trend. Autonomous systems are being developed to flag potential NPT events before they occur; however, these systems are not yet widely used. In the absence of these systems, workflows among complementary disciplines have been developed to identify potential NPT events in large data streams transmitted to a RTOC. This paper presents example scenarios from deepwater prospects with potential actionable recommendations. Robust data streams transmitted to a RTOC can be received by the overlapping disciplines of hydraulics optimization, drilling optimization, and geomechanics. Staff from each discipline filter through the raw data to capture incoming information relevant to their respective output analysis. A key goal of each discipline is to mitigate the risk of NPT through real-time identification of warning trends observed during deepwater drilling in narrow pressure window situations. The multidisciplinary overlapping efforts produce a process that is much more effective than is possible with each discipline operating independently. Because real-time geomechanics seeks to update the bounding conditions of the downhole pressure operating windows, collaborative workflows are structured around validation and calibration of the real-time geomechanical model. Collaborative workflows are presented for specific operations during the well construction process in which NPT events are likely to occur, such as tripping out of the hole and drilling. In the examples, real-time calculated equivalent circulating density (ECD) models, hole cleaning parameters, swab pressure models, and torque/drag plots provide input to the real-time geomechanical model. Outputs of this analysis are actionable recommendations, such as an extended flow check, check trip, or mud weight increase. The workflows were developed based on lessons learned from information in a central database and the resulting best practices from multiple deepwater wells. Decision makers are provided with data-supported recommendations at crucial junctures; these recommendations typically involve costly rig time. The trade-off between increased rig time and benefits gained from the recommendation is difficult to quantify. The workflows derived from a library of NPT events address the perception of wasted rig time and provide context to real-time interpretations. Combined plots supporting the recommendation provide confidence for the driller that the increased rig time is time justified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call