Abstract

Programming by demonstration is reaching industrial applications, which allows non-experts to teach new tasks without manual code writing. However, a certain level of complexity, such as online decision making or the definition of recovery behaviors, still requires experts that use conventional programming methods. Even though, experts cannot foresee all possible faults in a robotic application. To encounter this, we present a framework where user and robot collaboratively program a task that involves online decision making and recovery behaviors. Hereby, a task-graph is created that represents a production task and possible alternative behaviors. Nodes represent start, end or decision states and links define actions for execution. This graph can be incrementally extended by autonomous anomaly detection, which requests the user to add knowledge for a specific recovery action. Besides our proposed approach, we introduce two alternative approaches that manage recovery behavior programming and compare all approaches extensively in a user study involving 21 subjects. This study revealed the strength of our framework and analyzed how users act to add knowledge to the robot. Our findings proclaim to use a framework with a task-graph based knowledge representation and autonomous anomaly detection not only for initiating recovery actions but particularly to transfer those to a robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.