Abstract
Product portfolio optimization is a typical multiobjective problem. The multichoice goal programming method becomes a popular means of resolving multiobjective decision problems. However, the classic multichoice goal programming method treats the product portfolio optimization in isolation and does not consider the mutual influence between portfolio products. Researchers should consider the interaction between products in portfolio optimization so that they can be adjusted to “real world” problems. The interaction between products can be explained by population dynamics. Logistic model is a classical method to analyze the population interaction. The equilibrium point of logistic model can show the ideal state of product population coordinated development. The combination of logistic and multichoice goal programming method is an effective approach to analyze the interaction of product portfolio. This paper therefore proposes a new alternative method to formulate the multiobjective problem and also uses an illustrative example to demonstrate the usefulness of the proposed method. The comparative analysis of model optimization results shows that logistic multichoice goal programming model can take into account resource constraints, product collaboration, and output maximization. Logistic multichoice goal programming model shows good performance in the aspects of operation complexity, operation time, sensitivity analysis, and collaborative entropy evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.