Abstract

Privacy concerns have become an important issue in Data Mining. This paper deal with the problem of association rule mining from distributed vertically partitioned data with the goal of preserving the confidentiality of each individual database. Each site holds some attributes of each transaction, and the sites wish to work together to find globally valid association rules without revealing individual transaction data. This problem occurs, for example, when the same users access several electronic shops purchasing different items in each. We present two algorithms for discovering frequent item sets and analyze their security, privacy and complexity properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.