Abstract

Because organic systems present complex environmental stress, plant breeders may either target very focused regions for different varieties, or create heterogeneous populations which can then evolve specific adaptation through on-farm cultivation and selection. This often leads to participatory plant breeding (PPB) strategies which take advantage of the specific knowledge of farmers. Participatory selection requires increased commitment and engagement on the part of the farmers and researchers. Projects may begin as researcher initiatives with farmer participation or farmer initiatives with researcher participation and over time evolve into true collaborations. These projects are difficult to plan in advance because by nature they change to respond to the priorities and interests of the collaborators. Projects need to provide relevant information and analysis in a time-frame that is meaningful for farmers, while remaining scientifically rigorous and innovative. This paper presents two specific studies: the first was a researcher-designed experiment that assessed the potential adaptation of landraces to organic systems through on-farm cultivation and farmer selection. The second is a farmer-led plant breeding project to select bread wheat for organic systems in France. Over the course of these two projects, many discussions among farmers, researchers and farmers associations led to the development of methods that fit the objectives of those involved. This type of project is no longer researcher-led or farmer-led but instead an equal collaboration. Results from the two research projects and the strategy developed for an ongoing collaborative plant breeding project are discussed.

Highlights

  • The regulatory system in many countries, in the European Union, restricts the varieties available to farmers to those registered in an official catalogue (National or European)

  • Results from the overall Farm Seed Opportunities (FSO) project showed that farmer varieties can be heterogeneous for some traits but homogeneous for others, and can be more or less adaptable depending on the trait and range of environmental conditions

  • The results for some traits are more complex to interpret, and it is not always clear if the lack of a selection differential or response was due to a lack of genetic diversity for those traits or because the traits used for varietal characterization may not be the most appropriate to measure the effects of on-farm selection when this selection is much more holistic in nature

Read more

Summary

Introduction

The regulatory system in many countries, in the European Union, restricts the varieties available to farmers to those registered in an official catalogue (National or European). Further regulations for variety registration vary by country but usually include “value for cultivation and use” standards that measure agronomic performance and technical end-use quality in conventional systems. This has resulted in a lack of suitable varieties available to organic farmers, since most modern varieties are developed for and tested in high-input conventional cropping systems. The vast majority (over 95%) of varieties used in organic agriculture were initially bred for conventional systems [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call