Abstract

A collaborative planning framework combining the Lagrangian Relaxation method and Genetic Algorithms is developed to coordinate and optimize the production planning of the independent partners linked by material flows in multiple tier supply chains. Linking constraints and dependent demand constraints were added to the monolithic Multi-Level, multi-item Capacitated Lot Sizing Problem (MLCLSP) for supply chains. Model MLCLSP was Lagrangian relaxed and decomposed into facility-separable sub-problems. Genetic Algorithms was incorporated into Lagrangian Relaxation method to update Lagrangian multipliers, which coordinated decentralized decisions of the facilities in supply chains. Production planning of independent partners could be appropriately coordinated and optimized by this framework without intruding their decision authorities and private information. This collaborative planning scheme was applied to a large set problem in supply chain production planning. Experimental results show that the proposed coordination mechanism and procedure come close to optimal results as obtained by central coordination in terms of both performance and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.