Abstract
The collaborative development of conventional buses and urban metro has become an important research topic for the priority development of urban public transport. The topic of collaborative optimization of feeder bus route design and operation is studied in this study. The objective function is to minimize the total travel time of passengers and the operation cost of feeder buses. The improved particle swarm optimization (PSO) algorithm is used to solve the collaborative optimization model, and the effectiveness of the model and algorithm is verified through the case study. The research shows that it is feasible in model construction and algorithm to carry out collaborative optimization of feeder bus route design and operation. Compared with the multiple-to-one (M to 1) mode, the multiple-to-multiple (M to M) mode can better satisfy the needs of passengers from different places of departure and destinations to achieve a more reasonable and realistic goal. The case study is based on two metro stations and 16 feeder bus stops on Fuzhou Metro line 2 to obtain two bus routes and a corresponding operation scheme. Under the same topology road network, the operation time of the improved PSO algorithm is much shorter than the DFS algorithm, the total cost error of the feeder bus is 0.04%, and the departure frequency error is 4.6%, which is within the reasonable error range. Therefore, the collaborative optimization model proposed in this study is feasible and effective in optimizing the feeder bus routes and operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.