Abstract

Abstract With the development of the economy, many regions have experienced a slowdown in economic growth. In order to promote the development of the electric vehicle (EV) industry, the country has also begun to introduce various policies to encourage the development of the EV industry. In this context, many local governments have begun to introduce policies and measures related to the development of the EV industry, such as increasing land use for the development of the EV industry and increasing support for the new energy automobile industry. These policy measures have played a positive role in promoting the development of the EV industry, but there are also some problems. For example, when many local governments introduce policies to support the development of the new energy automobile industry, their support for the EV industry is not significant. This article studied the collaborative optimization of the EV industry chain in response to issues such as insufficient technical strength, imbalanced supply-demand relationship, and insufficient downstream service chain capabilities in the EV industry chain. This article analyzed the composition of the EV industry chain and established an EV industry chain model to address these issues. This article used collaborative optimization algorithms to analyze the production volume of EVs in the EV industry chain, as well as the comprehensive efficiency, pure technical efficiency, and scale efficiency values of upstream, midstream, and downstream. Through experimental analysis, it was found that the comprehensive efficiency value of the upstream of the EV industry chain after using the collaborative optimization algorithm was 0.0792 higher than before. The research results of this article have provided reference significance for the analysis of collaborative optimization algorithms in other fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.