Abstract
We consider a collaborative opportunistic scheduling problem in a decentralized network with heterogeneous users. While most related researches focus on solutions for optimizing decentralized systems’ total performance, we proceed in another direction. Two problems are specifically investigated. (1) With heterogenous users having personal demands, is it possible to have it met by designing distributed opportunistic policies? (2) With a decentralized mechanism, how can we prevent selfish behaviors and enforce collaboration? In our research, we first introduce a multiuser network model along with a scheduling problem constrained by individual throughput requirement at each user’s side. An iterative algorithm is then proposed to characterize a solution for the scheduling problem, based on which collaborative opportunistic scheduling scheme is enabled. Properties of the algorithm, including convergence, will be discussed. Furthermore in order to keep the users staying with the collaboration state, an additional punishment strategy is designed. Therefore selfish deviation can be detected and disciplined so that collaboration is enforced. We demonstrate our main findings with both analysis and simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.