Abstract

For decades, soft sensors have been extensively renowned for their efficiency in real-time tracking of expensive variables for advanced process control. However, despite the diverse efforts lavished on enhancing their models, the issue of label sparsity when modeling the soft sensors has always posed challenges across various processes. In this paper, a fledgling technique, called co-training, is studied for leveraging only a small ratio of labeled data, to hone and formulate a more advantageous framework in soft sensor modeling. Dissimilar to the conventional routine where only two players are employed, we investigate the efficient number of players in batch processes, making a multiple-player learning scheme to assuage the sparsity issue. Meanwhile, a sliding window spanning across both time and batch direction is used to aggregate the samples for prediction, and account for the unique 2D correlations among the general batch process data. Altogether, the forged framework can outperform the other prevalent methods, especially when the ratio of unlabeled data is climbing up, and two case studies are showcased to demonstrate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.