Abstract

BackgroundCurrent World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity.ObjectiveIn this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app.MethodsAn on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player’s decisions were analysed individually and collectively.ResultsOn-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s.ConclusionThese findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist.

Highlights

  • Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment

  • Videogame and crowdsourcing architecture A videogame and a backend architecture with servers and databases on the cloud that allowed to run the experiments in real time was developed, showing new image samples to the players and collecting all the information that they produced in real time

  • The mean time to decide the malaria species shown in the image was 2.09 s and depended on the level of difficulty itself, ranging from 1.96 s for 2 species to 2.33 s if the decision was between 5 possible species (Fig. 2d)

Read more

Summary

Introduction

Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Plasmodium falciparum remains the most prevalent malaria parasite in sub-Saharan Africa, accounting for 99% of estimated malaria cases. Outside of Africa, P. vivax is the predominant parasite in America, representing 64% of malaria cases, accounting for over 30% and 40% of the cases in the South East Asia and Eastern Mediterranean regions, respectively [1]. Plasmodium malariae is widely distributed and it can be responsible for a significant proportion of malaria cases in some American regions [2]. The Plasmodium ovale distribution is highest in Western Africa, potentially accounting for up to 10% of the cases [3, 4]. Due its similarities with P. falciparum, misidentification is common [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call