Abstract

The hydraulic and acoustic performance of centrifugal pump is closely related to hydraulic structure parameters, and they are contradictory. In order to solve this contradiction, this paper introduces the pit bionic structure, and proposes an optimization method based on multi-objective test design and response surface to improve the hydraulic and acoustic performance. Taking the bionic vane pit diameter, axial spacing and radial spacing as design variables. Taking the maximum hydraulic efficiency and total sound pressure level reduction of centrifugal pump as the corresponding objectives. The multiple regression response surface model was constructed to determine the optimal parameter combination of hydraulic performance and noise collaborative optimization. The optimization results were verified by numerical simulation and experimental test. The results show that the response surface multi-objective optimization method has high prediction accuracy, has obvious synergistic effect on the hydraulic and acoustic performance. The highest point of the efficiency curve after optimization is shifted to the direction of large flow, which widens the high efficiency working area of centrifugal pump. Under the rated condition, the hydraulic efficiency is increased by 3.03%, the efficiency increase rate is 4.21%, the total sound pressure level is reduced by 4.96 dB, and the noise reduction rate is 3.01%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.