Abstract

Session-based recommendation (SBR) , which mainly relies on a user’s limited interactions with items to generate recommendations, is a widely investigated task. Existing methods often apply RNNs or GNNs to model user’s sequential behavior or transition relationship between items to capture her current preference. For training such models, the supervision signals are merely generated from the sequential interactions inside a session, neglecting the correlations of different sessions, which we argue can provide additional supervisions for learning the item representations. Moreover, previous methods mainly adopt the cross-entropy loss for training, where the user’s ground truth preference distribution towards items is regarded as a one-hot vector of the target item, easily making the network over-confident and leading to a serious overfitting problem. Thus, in this article, we propose a Collaborative Graph Learning (CGL) approach for session-based recommendation. CGL first applies the Gated Graph Neural Networks (GGNNs) to learn item embeddings and then is trained by considering both the main supervision as well as the self-supervision signals simultaneously. The main supervisions are produced by the sequential order while the self-supervisions are derived from the global graph constructed by all sessions. In addition, to prevent overfitting, we propose a Target-aware Label Confusion (TLC) learning method in the main supervised component. Extensive experiments are conducted on three publicly available datasets, i.e., Retailrocket, Diginetica, and Gowalla. The experimental results show that CGL can outperform the state-of-the-art baselines in terms of Recall and MRR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.