Abstract

As one of the most successful recommender systems, collaborative filtering (CF) algorithms are required to deal with high sparsity and high requirement of scalability amongst other challenges. Bayesian networks (BNs), one of the most frequently used classifiers, can be used for CF tasks. Previous works on applying BNs to CF tasks were mainly focused on binary-class data, and used simple or basic Bayesian classifiers.1,2 In this work, we apply advanced BNs models to CF tasks instead of simple ones, and work on real-world multi-class CF data instead of synthetic binary-class data. Empirical results show that with their ability to deal with incomplete data, the extended logistic regression on tree augmented naïve Bayes (TAN-ELR)3 CF model consistently performs better than the traditional Pearson correlation-based CF algorithm for the rating data that have few items or high missing rates. In addition, the ELR-optimized BNs CF models are robust in terms of the ability to make predictions, while the robustness of the Pearson correlation-based CF algorithm degrades as the sparseness of the data increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.