Abstract

Recent research in mining user access patterns for predicting Web page requests focuses only on consecutive sequential Web page accesses, i.e., pages which are accessed by following the hyperlinks. In this paper, we propose a new method for mining user access patterns that allows the prediction of multiple non-consecutive Web pages, i.e., any pages within the Web site. Our approach consists of two major steps. First, the shortest path algorithm in graph theory is applied to find the distances between Web pages. In order to capture user access behavior on the Web, the distances are derived from user access sequences, as opposed to static structural hyperlinks. We refer to these distances as minimum reaching distance (MRD) information. The association rule mining (ARM) technique is then applied to form a set of predictive rules which are further refined and pruned by using the MRD information. The proposed approach is applied as a collaborative filtering technique to recommend Web pages within a Web site. Experimental results demonstrate that our approach improves performance over the existing Markov model approach in terms of precision and recall, and also has a better potential of reducing the user access time on the Web

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.