Abstract

While a user's preference is directly reflected in the interactive choice process between her and the recommender, this wealth of information was not fully exploited for learning recommender models. In particular, existing collaborative filtering (CF) approaches take into account only the binary events of user actions but totally disregard the contexts in which users' decisions are made. In this paper, we propose Collaborative Competitive Filtering (CCF), a framework for learning user preferences by modeling the choice process in recommender systems. CCF employs a multiplicative latent factor model to characterize the dyadic utility function. But unlike CF, CCF models the user behavior of choices by encoding a local competition effect. In this way, CCF allows us to leverage dyadic data that was previously lumped together with missing data in existing CF models. We present two formulations and an efficient large scale optimization algorithm. Experiments on three real-world recommendation data sets demonstrate that CCF significantly outperforms standard CF approaches in both offline and online evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.