Abstract

Challenges of authentication in decentralized mobile networks arise from frequently changing topologies and unreliable contention-based transmissions. We propose a new protocol to speed up authentications, reduce communication costs, and support opportunistic routing under fast-changing topologies. Key pairs are predistributed across the network. Nodes that predistributed the same pair can instantly verify and route messages for each other in an opportunistic and cooperative fashion, combating fast-changing topologies. We also enable a node to increasingly combine unauthenticated messages and a new message for signature or message authentication code generation, while trying different keys on-the-fly. The messages can be verified altogether, once a key is matched. The communication overhead, thus, becomes independent of the number of keys tried. Closed-form expressions for authentication rate, delay, and throughput are derived through a new three-dimensional Markov model. Validated by simulations, analytical results corroborate the robustness of the proposed protocol against changing topologies, as well as the substantially improved resistance to collusion attacks, as compared with the state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.