Abstract
Intelligent traffic signal systems, crucial for intelligent transportation systems, have been widely studied and deployed to enhance vehicle traffic efficiency and reduce air pollution. Unfortunately, intelligent traffic signal systems are at risk of data spoofing attack, causing traffic delays, congestion, and even paralysis. In this paper, we reveal a multivehicle collaborative data spoofing attack to intelligent traffic signal systems and propose a collaborative attack sequence generation model based on multiagent reinforcement learning (RL), aiming to explore efficient and stealthy attacks. Specifically, we first model the spoofing attack based on Partially Observable Markov Decision Process (POMDP) at single and multiple intersections. This involves constructing the state space, action space, and defining a reward function for the attack. Then, based on the attack modeling, we propose an automated approach for generating collaborative attack sequences using the Multi‐Actor‐Attention‐Critic (MAAC) algorithm, a mainstream multiagent RL algorithm. Experiments conducted on the multimodal traffic simulation (VISSIM) platform demonstrate a 15% increase in delay time (DT) and a 40% reduction in attack ratio (AR) compared to the single‐vehicle attack, confirming the effectiveness and stealthiness of our collaborative attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.