Abstract

This study presents a novel hybrid mesoporous material for degrading drug pollutants in water. The hybrid materials, derived from UiO-66 metal-organic framework and chitosan, coated on nano-silica, showed excellent drug adsorption through hydrogen-bonding interactions and efficient photodegradation of antibiotics. The hybrid material's enhanced conductivity and reduced band gap significantly improved pollution reduction by minimising electron-hole recombination. This allows for more efficient charge transport and better light absorption, boosting the material's ability to break down pollutants. Structural and morphological analyses were conducted using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Optimising the adsorption-photodegradation process involved investigating pH, catalyst dose, and radiation time. Non-linear optimisation revealed an efficiency exceeding 85 % for 400 mg/L tetracycline and doxycycline, the model antibiotics. The optimal parameters for maximal elimination were determined as pH = 4.3, hybrid mesosphere dose = 4.0 mg/mL, and radiation time = 10 min. Kinetic studies favored pseudo-second-order diffusion models over pseudo-first-order models. The hybrid mesosphere showed sustained efficiency after three cycles and performed well in real aqueous samples, removing over 80 % of each antibiotic. This study demonstrates the potential of the hybrid mesoporous material for removing pharmaceutical pollutants in water systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.