Abstract
In a streaming-oriented era, predicting which songs will be successful is a significant challenge for the music industry. Indeed, there are many efforts in determining the driving factors that contribute to a song’s success, and one potential solution could be incorporating artistic collaborations, as it allows for a wider audience reach. Therefore, we propose a multi-perspective approach that includes collaboration between artists as a factor for hit song prediction. Specifically, by combining online data from Billboard and Spotify, we tackle the problem as both classification and hit song placement tasks, applying five different model variants. Our results show that relying only on music-related features is not enough, whereas models that also consider collaboration features produce better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.