Abstract

There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.