Abstract
Bacterial infections, especially chronic infections caused by bacterial biofilms, have become a worldwide threat to public health. Encouragingly, the synergistic actions of two or more antibacterial drugs have been proven to be effective in treating refractory bacterial infections. Herein, we fabricated a robust antibacterial nanohybrid, the colistin-loaded polydopamine nanospheres (PDA NSs) decorated uniformly with small silver nanodots (u-CPSs), and the u-CPSs could realize synergistic bactericidal performance for combating bacterial infections. PDA NSs, as an adhesive nanocarrier, could bind to the bacterial surfaces, where the drugs (colistin and silver ions) on the PDA surfaces could be released persistently via a near-infrared laser-triggered manner. Interestingly, compared with colistin-loaded PDA NSs decorated sparsely with large silver nanoparticles (s-CPSs), the u-CPSs exhibited stronger antibacterial and antibiofilm effects. We have also demonstrated that the u-CPSs could disrupt the cell walls/membranes of Gram-negative Escherichia coli bacteria and induce the generation of toxic reactive oxygen species within the bacteria. Collectively, the present work exemplifies the exquisite design and synthesis of PDA-based nanohybrids for achieving synergistic antibacterial and antibiofilm activities, which may promote the development of more powerful nanoagents to fight against bacterial infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.