Abstract

Bioenergy is the only renewable carbon energy source and can contribute to future sustainable energy. This paper presents: I) the whole Jatropha curcas seed liquefaction to produce bio-crude oil, using (Na2CO3) as conventional catalyst; and II) co-liquefaction of glycerol and whole Jatropha curcas seed to produce bio-crude oil, using deep eutectic solvents (choline chloride-p-toluene sulphonic acid) as novel catalyst. The effects of process parameters, including reaction temperature, catalyst concentration, and biomass loading were observed. Temperature was the predominant factor. High yield of bio-crude oil (32.87 wt%) was obtained for the liquefaction (I) as compared to yield of bio-crude oil (8.99 wt%) for the co-liquefaction (II). The optimum glycerol addition was 30 wt%. The bio-crude oil I had moisture (6.47 ± 0.27 wt%) and bio-crude oil II was (6.04 ± 0.42 wt%). The oxygen content in bio-crude oil I was (28.15 ± 0.88 wt%) while bio-crude oil II had reduced (21.58 ± 0.70 wt%) oxygen content. The HHV of the bio-crude oil II (31.73 ± 0.69 MJ/kg) is higher than that of bio-crude oil I (28.80 ± 1.32 MJ/kg). Acidic deep eutectic solvents deterred co-liquefaction yield. In conclusion, co-liquefaction decreased the product yield but improved its quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call