Abstract

In our previous work ( Chen , X.-Y. ; Chem. Commun. 2013 , 49 , 10977 - 10979 ), we have reported the crystal structure and spin-crossover properties of a compound [Fe(NCS)2(tppm)]·S [1·S, tppm = 4,4',4″,4‴-tetrakis(4-pyridylethen-2-yl)tetraphenylmethane, S = 5CH3OH·2CH2Cl2]. Here, its analogues [Fe(X)2(tppm)]·S [X = NCSe(-), NCBH3(-), and N(CN)2(-) for compounds 2·S, 3·S, and 4·S, respectively] have been synthesized and characterized by variable-temperature X-ray diffraction and magnetic measurements. The crystal structure analyses of 2·S and 3·S reveal that both compounds possess the same topologic framework (PtS-type) building from the tetrahedral ligand tppm and planar unit FeX2; the framework is two-fold self-interpenetrated to achieve one-dimensional open channels occupied by solvent molecules. Powder X-ray diffraction study indicates the same crystal structure for 4. The average values of Fe-N distances observed, respectively, at 100, 155, and 220 K for the Fe1/Fe2 centers are 1.969/2.011, 1.970/2.052, and 2.098/2.136 Å for 2·S, whereas those at 110, 175, and 220 K are 1.972/2.013, 1.974/2.056, and 2.100/2.150 Å for 3·S, indicating the presence of a two-step spin crossover in both compounds. Temperature-dependent magnetic susceptibilities (χMT) confirm the two-step spin-crossover behavior at 124 and 200 K in 2·S, 151 and 225 K in 3·S, and 51 and 126 K in 4·S, respectively. The frameworks of 2-4 are reproducible upon solvent exchange and thereafter undergo solvent-dependent spin-crossover behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.