Abstract
A role for cold-shock domain (CSD) proteins in abnormal cell proliferation has been suggested in the literature. The aim of this study was to investigate the effect of hepatocyte growth factor (HGF)-induced up-regulation of CSD protein A (CSDA) expression on vascular endothelial growth factor (VEGF) expression and its role in gastric cancer cell invasion and proliferation. We assessed effects on two gastric cancer cell lines using reverse transcription-polymerase chain reaction, western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and CSDA knockdown with short hairpin RNA. Hepatocyte growth factor (HGF) elevates CSDA levels in gastric cancer cell lines. To elucidate the mechanism by which HGF prompts CSDA expression and its impact on vascular endothelial growth factor (VEGF), we applied the Mitogen Activated Protein Kinase (MAPK) inhibitor PD098059 and conducted analyses using western blot. Following the administration of PD098059, a reduction in the protein levels of HGF-stimulated VEGF was observed. Additionally, silencing of CSDA resulted in diminished levels of both VEGF and phosphorylated extracellular signal-regulated kinase (ERK). The suppression of CSDA also led to reduced HGF-induced cell proliferation and diminished invasive capabilities in vitro. Furthermore, our research pinpointed a potential activator protein-1 (AP-1) binding site within the VEGF promoter zone, validating its activity via chromatin immunoprecipitation assays. Electrophoretic mobility shift assays further disclosed that HGF-induced CSDA augmentation correlates with an increase in AP-1 binding to VEGF. CSDA is crucial for the proliferation of gastric cancer cells, and the inhibition of this protein could impede the advancement of gastric cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.