Abstract

A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.