Abstract

In order to develop new nickel-free biomedical Ti-based alloys, effect of silver additions on mechanical properties of Ti-5Cr (mol%) alloy was investigated. Cold workability of Ti-5Cr alloy was 5% in thickness reduction and the cold rolling reduction was improved to be 38% by 2mol% Ag addition and 96% by 4mol%Ag addition. The improvement was due to β phase stabilization. From the XRD results, α’ martensite was the dominant phase in Ti-5Cr-2Ag alloy and β phase was the dominant phase in Ti-5Cr-4Ag alloy. By tensile tests, Ti-5Cr-4Ag alloy showed good strength of 447 MPa in ultimate tensile strength (UTS) and ductility of 13% in fracture strain. Ti-5Cr-4Ag showed higher hardness of HV398 than Ti-5Cr-2Ag with HV288. The hardening by increase of Ag is probably due to the solid solution strengthening. By the cyclic loading-unloading tensile tests with a constant strain increment, Ti-5Cr-4Ag showed pseoudoelastic behavior. Ti-5Cr-4Ag also showed shape memory effect with 57% in shape recovery ratio. It is concluded that Ti-5Cr-4Ag is hopeful as a new non-allergic shape memory material for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call