Abstract

Gelatin was extracted from Alaska pollock ( Theragra chalcogramma) and Alaska pink salmon ( Oncorhynchus gorbuscha) skins and cast into films. The fish gelatin films’ tensile, thermal, water vapor permeability, oxygen permeability, and biodegradation properties were compared to those of bovine and porcine gelatin films. In addition, fish gelatin films were cross-linked with glutaraldehyde. Pollock and salmon gelatin films had comparable tensile properties, but had lower tensile strength and percent elongation than mammalian gelatin films. The lower strength and elongation might have been due to lower structural gelatin levels present in fish gelatin films. The addition of cross-linkers had little effect on tensile properties and melting temperatures of fish gelatin films. Pollock gelatin films had the lowest water vapor and oxygen permeability values, whereas mammalian gelatin films had the highest permeability values. Cross-linking resulted in lower water vapor permeability for salmon gelatin films and higher oxygen permeability for pollock gelatin films. However, all fish gelatin films had better water vapor and oxygen barrier properties than mammalian gelatin films. Also, fish gelatin films degraded faster than mammalian gelatin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.