Abstract

Abstract Measurements of temperature, velocity, and microscale velocity shear were made from the research submarine F. A. Forel in the near-surface mixed layer of Lake Geneva under conditions of moderate winds of 6–8 m s−1 and of net heating at the water surface. The submarine carried arrays of thermistors and a turbulence package, including airfoil shear probes. The rate of dissipation of turbulent kinetic energy per unit mass, estimated from the variance of the shear, is found to be lognormally distributed and to vary with depth roughly in accordance with the law of the wall at the measurement depths, 15–20 times the significant wave height. Measurements revealed large-scale structures, coherent over the 2.38-m vertical extent sampled by a vertical array of thermistors, consisting of filaments tilted in the wind direction. They are typically about 1.5 m wide, decreasing in width in the upward direction, and are horizontally separated by about 25 m in the downwind direction. Originating in the upper thermocline, they are characterized in the mixed layer by their relatively low temperature and low rates of dissipation of turbulent kinetic energy and by an upward vertical velocity of a few centimeters per second.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call