Abstract

ABSTRACTAim The large biogenic structures formed by colonial cold‐water scleractinian corals provide valuable habitat for marine invertebrates on seamounts and the continental slope of all world oceans. These patchily distributed long‐lived structures are easily damaged by several human activities, particularly bottom trawling for fish, and are potentially vulnerable to ocean acidification caused by climate change. Consequently, an important conservation question is whether these structures support a specialized invertebrate fauna restricted to these habitats. Here we investigate the relationship between structures formed by the coral Solenosmilia variabilis and its associated ophiuroid (brittlestar) fauna, one of the dominant components of deep‐sea ecosystems.Location Seafloor habitat around Southern Australia, New Zealand, and the Macquarie Ridge from 35 to 53° S and 117° E–176° W, 500–1500 m depth.Methods Data were derived from samples collected by numerous scientific expeditions to the study region. Because these samples were collected using a variety of gear and effort, a two‐step approach was used. First, the largest consistently collected data set (73 ophiuroid species from 59 samples) was assembled for multivariate analysis. ANOSIM was used to test for differences in ophiuroid community composition between Solenosmilia and non‐Solenosmilia habitat on seamounts and the continental slope, and SIMPER was used to identify species that characterized Solenosmilia habitat. Second, these results were validated against all known data to ensure that these characteristic species had not been found in non‐Solenosmilia habitat elsewhere.Results The ophiuroid assemblages from Solenosmilia habitat were distinct from those found on other habitats on the continental slope and offshore seamounts across the study region. Although a suite of ophiuroid species characterized Solenosmilia habitat, most have also been collected from dead coral or other rubble, suggesting a physical rather than biological association between the coral matrix and its associated invertebrate fauna.Main conclusions Despite the lack of an exclusive ophiuroid–coral relationship, cold‐water scleractinian coral remains the principal habitat for a number of ophiuroid species across southern Australia and New Zealand. The slow growth rate of the coral and the low dispersal potential of some associated species suggest that recovery of damaged cold‐water coral assemblages will be a long‐term process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.