Abstract

Based on the concept of cold valley in cold fission and fusion, we have investigated the cluster decay process in 248–254Cf isotopes. In addition to alpha particle minima, other deep minima occur for S, Ar and Ca clusters. It is found that inclusion of proximity potential does not change the position of minima but minima become deeper. Taking Coulomb and proximity potential as interacting barrier for post-scission region, we computed half-lives and other characteristics for various clusters from these parents. Our study reveals that these parents are stable against light clusters and unstable against heavy clusters. Computed half-lives for alpha decay agree with experimental values within two orders of magnitude. The most probable clusters from these parents are predicted to be 46Ar, 48,50Ca which indicate the role of doubly or near doubly magic clusters in cluster radioactivity. Odd A clusters are found to be favorable for emission from odd A parents. Cluster decay model is extended to symmetric region and it is found that symmetric fission is also probable which stresses the role of doubly or near doubly magic 132Sn nuclei. Geiger-Nuttal plots were studied for various clusters and are found to be linear with varying slopes and intercepts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call