Abstract
The distribution of the subtropical Asian clam (Corbicula fluminea (O.F. Müller, 1774)), one of the world’s most invasive freshwater molluscs, is reportedly constrained by a lower thermal tolerance limit of 2 °C. Although its occurrence in north temperate regions is typically restricted to artificially heated waterbodies, the species has been found to overwinter in unheated lakes and rivers. In laboratory experiments, we compared the cold tolerance of populations from several geographically distinct sites spanning 35°N to 46°N in eastern North America. Each population contained individuals that fully recovered from 2 months of continuous exposure to near-freezing (1 °C) conditions, contrary to published accounts of C. fluminea’s thermal ecology. Survivorship increased with body size and was enhanced by prior acclimation to a low temperature (10 °C) compared with a higher one (18 °C). When acclimated to 10 °C, clams from northern populations exhibited greater survivorship (55.0% ± 16.1%) than those from southern populations (26.7% ± 19.2%). However, one southern population demonstrated survivorship as great as that of the most tolerant northern population, suggesting that its clams could overwinter in unheated northern waterbodies. Differences among populations indicate either that contemporary evolution has occurred or that developmental plasticity shapes future acclimation responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.