Abstract
Modeling a gyrotron cavity in 3D and timedomain is very challenging due to the open-end features of cavity structure and higher-order mode excitation employed to achieve high efficiency. In this work, a 3D conformal finite-difference time-domain (CFDTD) method has been developed to perform a cold test of a gyrotron cavity. Arbitrarily high order modes can be launched in a gyrotron cavity in time domain to determine the open cavity resonant characteristics. Our preliminary results show that the 3D CFDTD method could provide an alternative modeling tool for designing and validating a gyrotron cavity configuration for further hot tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.