Abstract

We constructed and developed an in-situ cryogenic nanomechanical system to study small-scale mechanical behavior of materials at low temperatures. Uniaxial compression of two body-centered-cubic (bcc) metals, Nb and W, with diameters between 400 and 1300 nm, was studied at room temperature and at 165 K. Experiments were conducted inside of a Scanning Electron Microscope (SEM) equipped with a nanomechanical module, with simultaneous cooling of sample and diamond tip. Stress-strain data at 165 K exhibited higher yield strengths and more extensive strain bursts on average, as compared to those at 298 K. We discuss these differences in the framework of nano-sized plasticity and intrinsic lattice resistance. Dislocation dynamics simulations with surface-controlled dislocation multiplication were used to gain insight into size and temperature effects on deformation of nano-sized bcc metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call