Abstract

The small bowel is prone to ischemic injury during transport before transplantation, an injury that endangers the recipient patient. The small-bowel mucosal microcirculation in particular appears to be highly sensitive to injury. Current preservation solutions such as histidine-tryptophan-ketoglutarate (HTK) solution provide some protection to the graft. However, these were developed decades ago and do not address several critical processes, such as hypoxia-induced membrane pores and free radical-mediated hypothermic injury. To protect the graft from cold ischemic injury, we implemented a modified HTK solution here, including glycine, alanine, and iron chelators in a heterotopic, syngeneic small-bowel transplantation model of the rat. The effects of the modified solution and its major components were compared against the conventional HTK solution using intravital microscopy in the early reperfusion period. The amino acid glycine, added to HTK solution, slightly improved mucosal perfusion. Both, the modified base solution (without iron chelators) and iron chelators increased functional capillary density of the mucosa during the early reperfusion period. The complete modified solution (with glycine, alanine, and iron chelators) significantly increased the perfusion index, functional capillary density of the mucosa, and red blood cell velocity in the grafts after reperfusion in comparison with the grafts preserved with HTK. The modified preservation solution improved the microcirculation of the transplants and needs detailed evaluation in further models of small-bowel transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.