Abstract

AbstractDirect fabrication of metal near-net shapes from a computer model typically involves melting and solidification, which can cause high residual stresses, undesirable phases, poor microstructures, rough surface finishes, warpage, and other problems. This paper describes a new technology, still under development, that might be used to directly fabricate solid, near-fulldensity, free-form shapes of many metals, and even some composite materials, at or near room temperature without melting and solidification. In this process, tentatively called Cold Spray Direct Fabrication (CSDF), powder particles in a supersonic jet of compressed gas impact a solid surface with sufficient energy to cause plastic deformation and consolidation with the underlying material by a process thought to be analogous to explosive welding. Material deposition by cold spray methods has already been successfully demonstrated by several investigators. This paper presents results of an experimental study to investigate the effects of selected process variables on cold spray particle velocities. In addition, a key technical barrier to the CSDF concept is focusing the spray stream down to dimensions that would permit a useful level of part detail, while still providing practical build rates. This paper presents results of initial research to develop an aerodynamic lens that may provide the required particle stream focusing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.