Abstract

Cost-effective bulk scintillators with high density, large-area, and long-term stability are desirable for high-energy radiation detections. Conventional bulk polycrystalline or single-crystal scintillators are generally synthesized by high-temperature approaches, and it is challenging to realize simultaneously high detectivity/responsivity, spatial resolution, and rapid time response. Here, we report the cold sintering of bulk scintillators (at 90 °C) based on an "emitter-in-matrix" principle, in which emissive CsPbBr3 nanocrystals are embedded in a durable and transparent Cs4PbBr6 matrix. These bulk scintillators exhibit high light yield (33,800 photons MeV-1), low detection limit (79 nGyair s-1), fast decay time (9.8 ns), and outstanding spatial resolution of 8.9 lp mm-1 to X-ray radiation and an energy resolution of 19.3% for γ-ray (59.6 keV) detection. The composite scintillator also shows exceptional stability against environmental degradation and cyclic X-ray radiation. Our results demonstrate a cost-effective strategy for developing perovskite-based bulk transparent scintillators with exceptional performance and high radioluminescence stability for high-energy radiation detection and imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call